Functions Preserving Nonnegativity of Matrices
نویسندگان
چکیده
The main goal of this work is to determine which entire functions preserve nonnegativity of matrices of a fixed order n— i.e., to characterize entire functions f with the property that f(A) is entrywise nonnegative for every entrywise nonnegative matrix A of size n×n. Towards this goal, we present a complete characterization of functions preserving nonnegativity of (block) uppertriangular matrices and those preserving nonnegativity of circulant matrices. We also derive necessary conditions and sufficient conditions for entire functions that preserve nonnegativity of symmetric matrices. We also show that some of these latter conditions characterize the even or odd functions that preserve nonnegativity of symmetric matrices.
منابع مشابه
Integral and Nonnegativity Preserving Approximations of Functions
In this paper we consider the problem of approximating a function by continuous piecewise linear functions that preserve the integral and nonnegativity of the original function.
متن کاملLinear Functions Preserving Sut-Majorization on RN
Suppose $textbf{M}_{n}$ is the vector space of all $n$-by-$n$ real matrices, and let $mathbb{R}^{n}$ be the set of all $n$-by-$1$ real vectors. A matrix $Rin textbf{M}_{n}$ is said to be $textit{row substochastic}$ if it has nonnegative entries and each row sum is at most $1$. For $x$, $y in mathbb{R}^{n}$, it is said that $x$ is $textit{sut-majorized}$ by $y$ (denoted by $ xprec_{sut} y$) if t...
متن کاملNonnegativity of bivariate quadratic functions on a triangle
Nadler. E., Nonnegativity of bivariate quadratic functions on a triangle. Computer Aided Geometric Design 9 (1992) 19.5-205. A necessary and sufficient condition for the nonnegativity of a bivariate quadratic defined on a triangle is presented in terms of the Bernstein-Bkzier form of the function. Keywfords. Nonnegativity, bivariate quadratic function, Bernstein-BCzier form, positiviry preservi...
متن کاملLinear maps preserving or strongly preserving majorization on matrices
For $A,Bin M_{nm},$ we say that $A$ is left matrix majorized (resp. left matrix submajorized) by $B$ and write $Aprec_{ell}B$ (resp. $Aprec_{ell s}B$), if $A=RB$ for some $ntimes n$ row stochastic (resp. row substochastic) matrix $R.$ Moreover, we define the relation $sim_{ell s} $ on $M_{nm}$ as follows: $Asim_{ell s} B$ if $Aprec_{ell s} Bprec_{ell s} A.$ This paper characterizes all linear p...
متن کاملPreserving nonnegativity of an affine finite element approximation for a convection-diffusion-reaction problem
An affine finite element scheme approximation of a time dependent linear convectiondiffusion-reaction problem in 2D and 3D is presented. Specific conditions are given in terms of the coefficient functions, the computational grid and the discretization parameters to ensure that the nonnegativity property of the true solution is also satisfied by its approximation. Numerical examples are given wh...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Matrix Analysis Applications
دوره 30 شماره
صفحات -
تاریخ انتشار 2008